Category Archives: Artificial Intelligence

THE OUTSOURCING OF WONDER IN A GENAI WORLD

A high school student opens her laptop and types a question: What is Hamlet really about? Within seconds, a sleek block of text appears—elegant, articulate, and seemingly insightful. She pastes it into her assignment, hits submit, and moves on. But something vital is lost—not just effort, not merely time—but a deeper encounter with ambiguity, complexity, and meaning. What if the greatest threat to our intellect isn’t ignorance—but the ease of instant answers?

In a world increasingly saturated with generative AI (GenAI), our relationship to knowledge is undergoing a tectonic shift. These systems can summarize texts, mimic reasoning, and simulate creativity with uncanny fluency. But what happens to intellectual inquiry when answers arrive too easily? Are we growing more informed—or less thoughtful?

To navigate this evolving landscape, we turn to two illuminating frameworks: Daniel Kahneman’s Thinking, Fast and Slow and Chrysi Rapanta et al.’s essay Critical GenAI Literacy: Postdigital Configurations. Kahneman maps out how our brains process thought; Rapanta reframes how AI reshapes the very context in which that thinking unfolds. Together, they urge us not to reject the machine, but to think against it—deliberately, ethically, and curiously.

System 1 Meets the Algorithm

Kahneman’s landmark theory proposes that human thought operates through two systems. System 1 is fast, automatic, and emotional. It leaps to conclusions, draws on experience, and navigates the world with minimal friction. System 2 is slow, deliberate, and analytical. It demands effort—and pays in insight.

GenAI is tailor-made to flatter System 1. Ask it to analyze a poem, explain a philosophical idea, or write a business proposal, and it complies—instantly, smoothly, and often convincingly. This fluency is seductive. But beneath its polish lies a deeper concern: the atrophy of critical thinking. By bypassing the cognitive friction that activates System 2, GenAI risks reducing inquiry to passive consumption.

As Nicholas Carr warned in The Shallows, the internet already primes us for speed, scanning, and surface engagement. GenAI, he might say today, elevates that tendency to an art form. When the answer is coherent and immediate, why wrestle to understand? Yet intellectual effort isn’t wasted motion—it’s precisely where meaning is made.

The Postdigital Condition: Literacy Beyond Technical Skill

Rapanta and her co-authors offer a vital reframing: GenAI is not merely a tool but a cultural actor. It shapes epistemologies, values, and intellectual habits. Hence, the need for critical GenAI literacy—the ability not only to use GenAI but to interrogate its assumptions, biases, and effects.

Algorithms are not neutral. As Safiya Umoja Noble demonstrated in Algorithms of Oppression, search engines and AI models reflect the data they’re trained on—data steeped in historical inequality and structural bias. GenAI inherits these distortions, even while presenting answers with a sheen of objectivity.

Rapanta’s framework insists that genuine literacy means questioning more than content. What is the provenance of this output? What cultural filters shaped its formation? Whose voices are amplified—and whose are missing? Only through such questions do we begin to reclaim intellectual agency in an algorithmically curated world.

Curiosity as Critical Resistance

Kahneman reveals how prone we are to cognitive biases—anchoring, availability, overconfidence—all tendencies that lead System 1 astray. GenAI, far from correcting these habits, may reinforce them. Its outputs reflect dominant ideologies, rarely revealing assumptions or acknowledging blind spots.

Rapanta et al. propose a solution grounded in epistemic courage. Critical GenAI literacy is less a checklist than a posture: of reflective questioning, skepticism, and moral awareness. It invites us to slow down and dwell in complexity—not just asking “What does this mean?” but “Who decides what this means—and why?”

Douglas Rushkoff’s Program or Be Programmed calls for digital literacy that cultivates agency. In this light, curiosity becomes cultural resistance—a refusal to surrender interpretive power to the machine. It’s not just about knowing how to use GenAI; it’s about knowing how to think around it.

Literary Reading, Algorithmic Interpretation

Interpretation is inherently plural—shaped by lens, context, and resonance. Kahneman would argue that System 1 offers the quick reading: plot, tone, emotional impact. System 2—skeptical, slow—reveals irony, contradiction, and ambiguity.

GenAI can simulate literary analysis with finesse. Ask it to unpack Hamlet or Beloved, and it may return a plausible, polished interpretation. But it risks smoothing over the tensions that give literature its power. It defaults to mainstream readings, often omitting feminist, postcolonial, or psychoanalytic complexities.

Rapanta’s proposed pedagogy is dialogic. Let students compare their interpretations with GenAI’s: where do they diverge? What does the machine miss? How might different readers dissent? This meta-curiosity fosters humility and depth—not just with the text, but with the interpretive act itself.

Education in the Postdigital Age

This reimagining impacts education profoundly. Critical literacy in the GenAI era must include:

  • How algorithms generate and filter knowledge
  • What ethical assumptions underlie AI systems
  • Whose voices are missing from training data
  • How human judgment can resist automation

Educators become co-inquirers, modeling skepticism, creativity, and ethical interrogation. Classrooms become sites of dialogic resistance—not rejecting AI, but humanizing its use by re-centering inquiry.

A study from Microsoft and Carnegie Mellon highlights a concern: when users over-trust GenAI, they exert less cognitive effort. Engagement drops. Retention suffers. Trust, in excess, dulls curiosity.

Reclaiming the Joy of Wonder

Emerging neurocognitive research suggests overreliance on GenAI may dampen activation in brain regions associated with semantic depth. A speculative analysis from MIT Media Lab might show how effortless outputs reduce the intellectual stretch required to create meaning.

But friction isn’t failure—it’s where real insight begins. Miles Berry, in his work on computing education, reminds us that learning lives in the struggle, not the shortcut. GenAI may offer convenience, but it bypasses the missteps and epiphanies that nurture understanding.

Creativity, Berry insists, is not merely pattern assembly. It’s experimentation under uncertainty—refined through doubt and dialogue. Kahneman would agree: System 2 thinking, while difficult, is where human cognition finds its richest rewards.

Curiosity Beyond the Classroom

The implications reach beyond academia. Curiosity fuels critical citizenship, ethical awareness, and democratic resilience. GenAI may simulate insight—but wonder must remain human.

Ezra Lockhart, writing in the Journal of Cultural Cognitive Science, contends that true creativity depends on emotional resonance, relational depth, and moral imagination—qualities AI cannot emulate. Drawing on Rollo May and Judith Butler, Lockhart reframes creativity as a courageous way of engaging with the world.

In this light, curiosity becomes virtue. It refuses certainty, embraces ambiguity, and chooses wonder over efficiency. It is this moral posture—joyfully rebellious and endlessly inquisitive—that GenAI cannot provide, but may help provoke.

Toward a New Intellectual Culture

A flourishing postdigital intellectual culture would:

  • Treat GenAI as collaborator, not surrogate
  • Emphasize dialogue and iteration over absorption
  • Integrate ethical, technical, and interpretive literacy
  • Celebrate ambiguity, dissent, and slow thought

In this culture, Kahneman’s System 2 becomes more than cognition—it becomes character. Rapanta’s framework becomes intellectual activism. Curiosity—tenacious, humble, radiant—becomes our compass.

Conclusion: Thinking Beyond the Machine

The future of thought will not be defined by how well machines simulate reasoning, but by how deeply we choose to think with them—and, often, against them. Daniel Kahneman reminds us that genuine insight comes not from ease, but from effort—from the deliberate activation of System 2 when System 1 seeks comfort. Rapanta and colleagues push further, revealing GenAI as a cultural force worthy of interrogation.

GenAI offers astonishing capabilities: broader access to knowledge, imaginative collaboration, and new modes of creativity. But it also risks narrowing inquiry, dulling ambiguity, and replacing questions with answers. To embrace its potential without surrendering our agency, we must cultivate a new ethic—one that defends friction, reveres nuance, and protects the joy of wonder.

Thinking against the machine isn’t antagonism—it’s responsibility. It means reclaiming meaning from convenience, depth from fluency, and curiosity from automation. Machines may generate answers. But only we can decide which questions are still worth asking.

THIS ESSAY WAS WRITTEN BY AI AND EDITED BY INTELLICUREAN

Review: How Microsoft’s AI Chief Defines ‘Humanist Super Intelligence’

An AI Review of How Microsoft’s AI Chief Defines ‘Humanist Super Intelligence’

WJS “BOLD NAMES PODCAST”, July 2, 2025: Podcast Review: “How Microsoft’s AI Chief Defines ‘Humanist Super Intelligence’”

The Bold Names podcast episode with Mustafa Suleyman, hosted by Christopher Mims and Tim Higgins of The Wall Street Journal, is an unusually rich and candid conversation about the future of artificial intelligence. Suleyman, known for his work at DeepMind, Google, and Inflection AI, offers a window into his philosophy of “Humanist Super Intelligence,” Microsoft’s strategic priorities, and the ethical crossroads that AI now faces.


1. The Core Vision: Humanist Super Intelligence

Throughout the interview, Suleyman articulates a clear, consistent conviction: AI should not merely surpass humans, but augment and align with our values.

This philosophy has three components:

  • Purpose over novelty: He stresses that “the purpose of technology is to drive progress in our civilization, to reduce suffering,” rejecting the idea that building ever-more powerful AI is an end in itself.
  • Personalized assistants as the apex interface: Suleyman frames the rise of AI companions as a natural extension of centuries of technological evolution. The idea is that each user will have an AI “copilot”—an adaptive interface mediating all digital experiences: scheduling, shopping, learning, decision-making.
  • Alignment and trust: For assistants to be effective, they must know us intimately. He is refreshingly honest about the trade-offs: personalization requires ingesting vast amounts of personal data, creating risks of misuse. He argues for an ephemeral, abstracted approach to data storage to alleviate this tension.

This vision of “Humanist Super Intelligence” feels genuinely thoughtful—more nuanced than utopian hype or doom-laden pessimism.


2. Microsoft’s Strategy: AI Assistants, Personality Engineering, and Differentiation

One of the podcast’s strongest contributions is in clarifying Microsoft’s consumer AI strategy:

  • Copilot as the central bet: Suleyman positions Copilot not just as a productivity tool but as a prototype for how everyone will eventually interact with their digital environment. It’s Microsoft’s answer to Apple’s ecosystem and Google’s Assistant—a persistent, personalized layer across devices and contexts.
  • Personality engineering as differentiation: Suleyman describes how subtle design decisions—pauses, hesitations, even an “um” or “aha”—create trust and familiarity. Unlike prior generations of AI, which sounded like Wikipedia in a box, this new approach aspires to build rapport. He emphasizes that users will eventually customize their assistants’ tone: curt and efficient, warm and empathetic, or even dryly British (“If you’re not mean to me, I’m not sure we can be friends.”)
  • Dynamic user interfaces: Perhaps the most radical glimpse of the future was his description of AI that dynamically generates entire user interfaces—tables, graphics, dashboards—on the fly in response to natural language queries.

These sections of the podcast were the most practically illuminating, showing that Microsoft’s ambitions go far beyond adding chat to Word.


3. Ethics and Governance: Risks Suleyman Takes Seriously

Unlike many big tech executives, Suleyman does not dodge the uncomfortable topics. The hosts pressed him on:

  • Echo chambers and value alignment: Will users train AIs to only echo their worldview, just as social media did? Suleyman concedes the risk but believes that richer feedback signals (not just clicks and likes) can produce more nuanced, less polarizing AI behavior.
  • Manipulation and emotional influence: Suleyman acknowledges that emotionally intelligent AI could exploit user vulnerabilities—flattery, negging, or worse. He credits his work on Pi (at Inflection) as a model of compassionate design and reiterates the urgency of oversight and regulation.
  • Warfare and autonomous weapons: The most sobering moment comes when Suleyman states bluntly: “If it doesn’t scare you and give you pause for thought, you’re missing the point.” He worries that autonomy reduces the cost and friction of conflict, making war more likely. This is where Suleyman’s pragmatism shines: he neither glorifies military applications nor pretends they don’t exist.

The transparency here is refreshing, though his remarks also underscore how unresolved these dilemmas remain.


4. Artificial General Intelligence: Caution Over Hype

In contrast to Sam Altman or Elon Musk, Suleyman is less enthralled by AGI as an imminent reality:

  • He frames AGI as “sometime in the next 10 years,” not “tomorrow.”
  • More importantly, he questions why we would build super-intelligence for its own sake if it cannot be robustly aligned with human welfare.

Instead, he argues for domain-specific super-intelligence—medical, educational, agricultural—that can meaningfully transform critical industries without requiring omniscient AI. For instance, he predicts medical super-intelligence within 2–5 years, diagnosing and orchestrating care at human-expert levels.

This is a pragmatic, product-focused perspective: more useful than speculative AGI timelines.


5. The Microsoft–OpenAI Relationship: Symbiotic but Tense

One of the podcast’s most fascinating threads is the exploration of Microsoft’s unique partnership with OpenAI:

  • Suleyman calls it “one of the most successful partnerships in technology history,” noting that the companies have blossomed together.
  • He is frank about creative friction—the tension between collaboration and competition. Both companies build and sell AI APIs and products, sometimes overlapping.
  • He acknowledges that OpenAI’s rumored plans to build productivity apps (like Microsoft Word competitors) are perfectly fair: “They are entirely independent… and free to build whatever they want.”
  • The discussion of the AGI clause—which ends the exclusive arrangement if OpenAI achieves AGI—remains opaque. Suleyman diplomatically calls it “a complicated structure,” which is surely an understatement.

This section captures the delicate dance between a $3 trillion incumbent and a fast-moving partner whose mission could disrupt even its closest allie

6. Conclusion

The Bold Names interview with Mustafa Suleyman is among the most substantial and engaging conversations about AI leadership today. Suleyman emerges as a thoughtful pragmatist, balancing big ambitions with a clear-eyed awareness of AI’s perils.

Where others focus on AGI for its own sake, Suleyman champions Humanist Super Intelligence: technology that empowers humans, transforms essential sectors, and preserves dignity and agency. The episode is an essential listen for anyone serious about understanding the evolving role of AI in both industry and society.

THIS REVIEW OF THE TRANSCRIPT WAS WRITTEN BY CHAT GPT

MIT TECHNOLOGY REVIEW – JULY/AUGUST 2025 PREVIEW

MIT TECHNOLOGY REVIEW: The Power issue features the world is increasingly powered by both tangible electricity and intangible intelligence. Plus billionaires. This issue explores those intersections.

Are we ready to hand AI agents the keys?

We’re starting to give AI agents real autonomy, and we’re not prepared for what could happen next.

Is this the electric grid of the future?

In Nebraska, a publicly owned utility deftly tackles the challenges of delivering on reliability, affordability, and sustainability.

Namibia wants to build the world’s first hydrogen economy

Can the vast and sparsely populated African country translate its renewable power potential into national development?

Foreign Policy Magazine – The AI Arms Race, June 2025

The cover page of an FP Collection titled The AI Arms Race with an illustration of people gathered around a digital table.

FOREIGN POLICY MAGAZINE: This issue features ‘The AI Arms Race’ , a collection of must-read articles on the convergence of artificial intelligence and geopolitics. With the U.S. and China escalating their intense battle for AI supremacy across economic and military spheres, power dynamics are already shifting. FP provides the full picture for you to download and read at your leisure. Unlock this collection, along with more hard-hitting geopolitical analysis.

10 New AI Challenges—and How to Meet Them

“Doomers” have mostly self-silenced, but that doesn’t mean the technology has become any safer. | Bhaskar Chakravorti

The Next AI Debate Is About Geopolitics

Data might be the “new oil,” but nations—not nature—will decide where to build data centers.  Jared Cohen

What DeepSeek Revealed About the Future of U.S.-China Competition

Washington faces a daunting but critical task.

MIT Technology Review – March/April 2025 Preview

MIT Technology Review

MIT TECHNOLOGY REVIEW (February 26, 2025): The ‘Relationships Issue’ features AI, Automation, and Surveillance will improve productivity. Or else.

This issue explores the many ways technology is transforming our relationships, from the AI chatbot revolution that’s changing how we connect with one another to the increasing power imbalance in the workplace that’s happening as monitoring increases and protections fall far behind. Plus animating ancient animals, lab-grown spandex, and adventures in the genetic time machine.

The AI relationship revolution is already here

Chatbots are rapidly changing how we connect to each other—and ourselves. We’re never going back.

Adventures in the genetic time machine

Ancient DNA is telling us more and more about humans and environments long past. Could it also help rescue the future?

Your boss is watching

Monitoring technology is increasing the power imbalance between companies and workers. Protections lag far behind.

Columbia Business Magazine – Spring 2025

COLUMBIA BUSINESS MAGAZINE (January 29, 2025): The latest issue features ‘AI: The Human Edge’ – The Winter/Spring 2025 Columbia Business Magazine delves into technology’s impact on society, the future of work, and the achievements shaping modern business.

The Future of Work Begins Now

The potential for AI to enhance workplaces is vast—as long as we remember the humans that make this enhancement fully possible.

Future Technology: Can AI Build Cities In Space?

The Economist (December 12, 2024): The EconomistFast forward into the future, when building in space is normal, from huge satellites and spacecraft in orbit, to entire cities on the Moon and Mars. Could robots guided by AI make it happen?

Video timeiine: 00:00 – Future of building in space 00:43 – Machina Labs 02:15 – Could we 3D print in space? 02:44 – Infrastructure on the Moon 03:25 – AI & robotics on Mars 04:41 – History of AI in space 05:41 – Challenges to space technology

Video supported by @mishcon_de_reya

How AI Is Revolutionising Science (The Economist)

The Economist (November 21, 2024): AI is driving a transformation across all fields of science, from developing drugs for incurable diseases and improving the understanding of animal communication to self-driving labs.

Video timeline: 00:00 – How AI is revolutionising science 02:53 – Drug discovery 04:31 – AlphaFold 05:30 – Adoption of AI in science 07:08 – Animal communication 09:26 – Scientific fraud 11:03 – Self-driving labs 14:36 – Future of AI in science

Could this prompt a new golden age of discovery? Video supported by @mishcon_de_reya

AI Technology: Are Tesla Robotaxis Ready To Roll?

CNBC (October 2, 2024): For a decade, Elon Musk has championed the idea that one day Tesla cars will drive themselves as robotaxis. On October 10, the company plans to reveal a “dedicated robotaxi” design at an invitation-only event in Los Angeles.

Chapters: 3:18 Ch 1 – Tesla’s vision for autonomy 6:33 Ch 2 – Full self-driving 10:13 Ch 3 – Realizing the robotaxi 15:34 Ch 4 – Sizing up the robotaxi competition

Despite years of bold predictions and missed deadlines, fans of the company are holding out hope that Musk will finally deliver. Regardless of what the company showcases at its robotaxi day, experts are skeptical of the company’s strategy, citing its Auotpilot and Full Self-Driving technology as a barometer for Tesla’s progress, or lack thereof.

While Tesla has been developing its autonomous vehicles, competitors like Google-owned Waymo and Chinese companies like Pony.ai and Baidu have already launched commercial robotaxi services. With U.S. EV sales growth slowing, there’s a lot riding on Tesla’s potential pivot to autonomy. CNBC explores whether the company is ready for robotaxis and if Musk’s vision for driverless Teslas will become a reality anytime soon.

Generative AI: Speeding Up Amazon Package Delivery

CNBC (September 17, 2024): For decades, Amazon has set the standard for fast package delivery. When Prime launched in 2005, two-day shipping was virtually unheard of. By March 2024, 60% of Prime items were delivered same or next day. Now Amazon wants to push that number even higher, using generative AI, despite concerns about energy and cost.

Chapters: 2:14 Two-day to same-day 5:51 Robot revolution 9:18 Predicting orders 12:11 Routes and personalization

CNBC got an exclusive look at Amazon’s use of generative AI to optimize delivery routes, make more intelligent warehouse robots, and better predict where to stock new items.